All-in-one flexible supercapacitor with ultra-stable performance under extreme load

Fiber-type solid-state supercapacitors can provide a stable power supply for next-generation wearable and flexible electronics. Typically, high charge storage and superior mechanical properties can be integrated into a single fiber to realize fiber-type, solid-state supercapacitors. In a new report now published in Science Advances, You Wan Na, Jae Yeong Cheon and Jae Ho Kim and a team of scientists in advanced nanohybrids and composite research, in Korea, designed a “jeweled necklace”-like hybrid composite fiber composed of double-walled carbon nanotube yarn and metal-organic frameworks (MOFs). The team heat-treated the MOFs and transformed them into MOF-derived carbon to maximize energy storage capabilities while retaining their mechanical properties. The hybrid fibers with tunable properties and mechanical robustness functioned under a variety of mechanical deformation conditions for the resulting super-strong fiber to deliver sufficient power to activate light emitting diodes while suspending a weight of 10 Kg.

This article is brought to you by this site.